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§1. INTRODUCTION

It1s well-known that Teichmiiller space is a ball of dimension (6g — 6). What is perhaps less
well-known is that this result can be interpreted purely in terms of the fundamental group
n1(Z) of a compact surface X and its representations in PSL(2, R). Every conformal
structure on X can be uniformized, thereby representing £ as the quotient of the upper
half-plane by a subgroup of PSL(2, R) isomorphic to n,(Z). This describes a homomor-
phism from =, (Z) to PSL(2, R) well-defined up to conjugation by an element of PSL(2, R).
It can be proved (see [4], [6]) that the set of all such homomorphisms constitutes 2 connec-
ted component of the topological space Hom(n,(Z); PSL(2, R))/PSL(2, R). We conclude,
therefore, that there is a component of this space homeomorphic to a Euclidean space
R(69-6)

In this paper we shall demonstrate the existence of an analogous component—which we
shall call the Teichmiiller component—where we replace the group PSL(2, R) by PSL(n, R)
or more generally by the adjoint group of a split real form G" of any complex simple Lie
group G° (recall that the split real forms of the classical groups are SL(n, R), SO(n + 1, n),
Sp(2n, R) and SO(n, n)). This component is homeomorphic to R‘*~24mE" and contains
Teichmiiller space in the sense that there is a distinguished three-dimensional subgroup
PSL(2, R) = G" which embeds the uniformizing representations of n,(Z) as a subspace of
the Teichmiiller component. We are therefore considering an extension of ordinary
Teichmiiller space.

To be more precise, we have:

THEOREM A. Let X be a compact oriented surface of genus g > | and let G be the adjoint
group of the split real form of a complex simple Lie group G¢. Let Hom™ (n,(Z); G") denote the
space of homomorphisms from the fundamental group to G" which act completely reducibly on
the Lie algebra of G'. Then the quotient of Hom™ (n,(X); G") by the conjugation action of G
has a connected component homeomorphic to a Euclidean space of dimension (2g — 2)dim G".

Returning to the case of PSL(2, R), there is an easy way to identify this distinguished
component. Every homomorphism from =n,(Z) to PSL(2, R) defines an associated (flat)
principal PSL(2, R)- bundle which is topologically classified by its reduction to a maximal
compact subgroup—in this case the circle. The first Chern class of this circle bundle then
provides an intcger invariant and it turns out that Teichmiiller space is precisely the
subspace for which this integer takes the value (2g — 2). (In fact an outer automorphism of
PSL(2, R) yields an isomorphic copy of the space corresponding to the value —~ (2g — 2)so
that in truth there are two components homeomorphic to a ball). In the latter half of this
paper we consider whether this feature holds for the Teichmiiller component of PSL(n, R) if
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n > 2. Here the maximal compact subgroup is PSO(n) and principal bundles with this
structure group are topologically classified by 2-torsion classes and not integers. We find in
this case that the Teichmiiller component does not fill up the space of homomorphisms in
a particular topological class of principal bundles. There is another component which
contains homomorphisms to the compact group PSO(n). (As above for n even an isomor-
phic copy of the Teichmiiller component is created by an outer automorphism of
PSL(n, R)). Roughly speaking, a homomorphism from =, (X) to PSL(n, R) can be connected
through a path either to a homomorphism to the projective orthogonal group, or to
a homomorphism arising from a uniformization.
This information about the components can be summarized in the following:

THEOREM B. The space Hom* (n,(X); PSL(n, R))/PSL(n, R) has, for n > 2, three connec-
ted components if n is odd and six components if n is even.

The method we use for proving the two theorems above is an analytical one—the theory
of Higgs bundles developed by the author, C. Simpson, K. Corlette, S. K. Donaldson and
others. A homomorphism from =n,(X) to G° defines a flat principal G‘-bundle. Given
a conformal structure on Z, a theorem of Corlette and Donaldson associates a natural
G-connection A, where G is the maximal compact subgroup of G, and a Higgs field
®e H°(Z; ad P ® K) which together satisfy the equations F, + [®, ®*] = 0. Solutions to
these equations can in turn be described by the holomorphic geometry of the principal
bundle and Higgs field, using theorems of the author and Simpson. This provides a holo-
morphic parametrization of the equivalence classes of homomorphisms from =, (Z) to G,
which can easily be adapted to reality conditions.

To prove Theorem A for an arbitrary simple Lie group we make essential use of the
results of Kostant on the principal 3-dimensional subgroup. The split real form of this gives
the homomorphism from PSL(2,R) to G" which embeds Teichmiiller space in the
Teichmiiller component.

To prove Theorem B we use the L?-norm squared of the Higgs field ®. For general
reasons this is a proper non-negative function and thus on each component of the space of
equivalence classes of homomorphisms has a minimum. By using the holomorphic point of
view and some boot-strapping induction the minima can be calculated.

Unfortunately, the analytical point of view used for the proofs gives no indication of the
geometrical significance of the Teichmiiller component. Teichmiiller space itself is, as we
know, not simply a space of homomorphisms of a fundamental group, but more impor-
tantly is the space of conformal structures (or metrics of constant negative curvature)
modulo the action of diffeomorphisms homotopic to the identity. This geometrical inter-
pretation gives a natural action of the mapping class group on Teichmiiller space. We do
have an action in the general case too, but there is no geometrical interpretation to support
it. The action on the moduli space of homomorphisms exists via the outer automorphisms
of m;(X), and this at most permutes components: on the other hand since Teichmiiller space
is embedded in the Teichmiiller component, the whole component is preserved by the
action. This provokes consideration of the quotient of the Teichmiiller component by the
mapping class group and possible compactifications, but without further geometrical
information it is difficult to proceed.

There is, despite this lack of information, one example which supports the view that the
generalized Teichmiiller spaces introduced here parametrize geometric structures on the
surface X. In [5], Goldman constructs a Teichmiiller space for convex RP? structures on
a surface. These are essentially uniformizations of £ by a convex open set in the real
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projective plane acted upon by the group of real projective transformations. Goldman’s
space is an open contractible subspace of our Teichmiiller component for PSL(3, R) and is
quite possibly the whole space. The general case of PSL(n, R), however, remains obscure.

§2. HIGGS BUNDLES

We recall here, for the reader’s benefit, the basic facts concerning Higgs bundles which
we shall be using. Details may be found in [2], [3], (6], [7], [12], [13] and [14].

Let = be a compact Riemann surface of genus g and ¥ a holomorphic vector bundle over
Z. A Higgs bundle is a pair (V, ®) where @ is a holomorphic section of End ¥ ® K, K being
the canonical line bundle over . The section @ is called a Higgs field.

A Higgs bundle is said to be stable if for each subbundle U < ¥V for which
®(U) = U ® K (considering ® as a map from V to V' ® K),

degU<degV
kU ~rkV°

Stability exhibits the following properties:

(1) If « is a holomorphic automorphism of ¥ and (V, ®) is stable, then (V, a*®) is also
stable.

(2) If (V, ®) is stable and 1€ C*, then (V, 1®) is stable.

(3) Stability is an open condition in the sense that il (¥, @) is stable then a dense open set
of any holomorphic family of Higgs bundles containing (¥, ®) is also stable.

The most important property of stable Higgs bundles is given by the theorem of
Simpson [13] and the author [6]: if (¥, ®) is stable and deg V' = 0 then there is a unique
unitary connection A on V, compatible with the holomorphic structure, such that

Fq+[®,®*]=0eQ"!(Z;End V) @2.1)

where F, is the curvature of the connection. When @ =0, this theorem becomes the
well-known result of Narasimhan and Seshadri [11].

Conversely, if a pair (V, @) satisfies the Higgs bundle equations (2.1) then a vanishing
theorem (see [6]) asserts that V is a direct sum of stable Higgs bundles. The same vanishing
theorem also yields the result that any holomorphic section of ¥ annihilated by ® is
necessarily covariant constant with respect to the connection A. This result has a number of
implications. Note that (2.1) is a statement about a connection on a principal U (n)-bundle:
the equation makes use only of the Lie bracket. Hence a holomorphic section of a vector
bundle associated to any representation of U(n) and annihilated by the action of @ is
covariant constant.

Similarly, (2.1) makes sense for a connection on a principal G-bundle P where G is the
compact real form of a complex Lie group G°and 4 — — A* is the compact real structure.
The Higgs field ® is now a holomorphic section of the bundle ad P ® ¢ K where ad P is the
Lie algebra bundle associated to the adjoint representation of G. A solution of the Higgs
bundle equations therefore decomposes the holomorphic vector bundle ad P ® C into
a direct sum of stable Higgs bundles. Conversely, if the vector bundle V' =adP®C
together with the Lie bracket action of @ is a direct sum of Higgs bundles, we can solve the
Higgs bundle equations and obtain a U(dim G)-connection. Furthermore, the Lie bracket
operation on ¥, considered as a section of Hom(¥V ® V, V), is holomorphic and compatible
with ® and hence covariant constant. The connection thus reduces to the group G.
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If we take a connection A which solves the Higgs bundle equations (2.1), then
V=V,+ 0+ P* (2.2

is a flat GL(n, C)-connection. Moreover, a vanishing theorem asserts that the holonomy
action of #,(X) on C" is completely reducible in the sense that any invariant subspace has an
invariant complement. A theorem of Corlette [2] and Donaldson [3] gives the converse: if
V is a vector bundle over a Riemann surface with a completely reducible flat connection V,
then there exists a metric on ¥ such that V can be written in the form (2.2) where (4, ®)
satisfy the Higgs bundle equations (2.1). We may similarly extend this result to connections
on principal G*-bundles.

The two theorems of Corlette and Simpson provide the means for producing our results.
We wish to describe a family of homomorphisms from n,(X) to a group G" < G*, or in other
words, flat connections over a surface . We do this by choosing a conformal structure on
T and describing a certain family of stable Higgs bundles which, by appealing to Simpson’s
result, will yield a family of flat connections. Corlette’s theorem will tell us that this family
exhausts a component of the appropriate space of flat connections. To do this, we also need
to understand some features of the moduli space concerned, details of which can again be
found in the above references.

Standard arguments using the Atiyah-Singer index theorem and Banach space implicit
function theorems show that the space of solutions to the Higgs bundle equations (2.1)
(together with the holomorphicity condition d;® = 0), modulo the group of gauge trans-
formations, is a Hausdorfl space M with a certain differentiable structure admitting
singularities. We are here going to consider the moduli space from the principal bundle
point of view, using the adjoint group (i.e. G/centre for a Lie group G). This introduces a few
more singularities than the vector bundie situation, but is the natural Lie-theoretic context
in which we choose to work. Here (see, for example {6] §5) the smooth points of the moduli
space occur for pairs (4, ®) for which there are no holomorphic sections of ad P® C
annihilated by ®. This is the generic, stable, situation: if we have a family of Lie algebra
bundles and Higgs fields ® containing a solution to the Higgs bundle equations at a smooth
point of the moduli space, then the implicit function theorem tells us that there is
a neighbourhood of that point for which corresponding solutions exist and these also give
smooth points of the moduli space.

Viewed through the Higgs bundle interpretation, M is globally a normal quasi-projec-
tive variety [13], [12]. It has a holomorphic action of C* corresponding to the scaling
action on the Higgs field: ® ++ 1®. Moreover, if the group G is simple and p,,. . ., p, form
a basis for the algebra of invariant polynomials on the Lie algebra, of degrees ny,.. ., n
then we obtain a holomorphic map [7]

]
pM—- @PHEZ; K™) (2.3)
i=1

defined by
P(A, ®) = (p\(D), . . ., pi(D))

where H%(X; K™) is the vector space of holomorphic sections of K"—the space of differen-
tials of degree n; on Z. This map is proper.

In the light of Corlette’s theorem, M is the moduli space of flat, completely reducible
G*-connections (where complete reducibility refers to the adjoint representation) and is thus
identified with the space of completely reducible homomorphisms of the fundamental group
to the complex adjoint group G¢, modulo the action of G°. It is within this space that we
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shall identify components for the split real form G". We begin with the linear group case of
PSL(n, R).

§3. THE LINEAR CASE

The simplest of all Higgs bundles is the basic model for the ones we shall construct in
this paper. Let K'/? be a square root of the canonical bundle (a “theta characteristic” or
“spin structure” in other parlance) and define

V= K—l/l @Kx/z

01
®= (o 0)'
Here 1 is to be interpreted as the canonical section of Hom(K!/?; K~1/2 @ K).

The only ®-invariant subbundle of ¥ is K~ /2 which has degree (1 — g)and so for g > 1
this is a stable Higgs bundle.

The corresponding solution of the Higgs bundle equations consists of a hermitian metric
on ¥ which is the direct sum of a metric on K~'/2 and its dual on K'>—in other words
a Riemannian metric on Z compatible with the complex structure. The equations (2.1) are
then equivalent to the Gaussian curvature of this metric being equal to — 1/4 (see [6]).
Thus in this case uniformizing the surface is equivalent to solving the Higgs bundle
equations.

We have here a Higgs bundle where both connection and Higgs field are defined on an
SU(2)-principal bundle. Now take the n-fold symmetric product of C? and the induced
action of SU(2)—this is the action on homogeneous polynomials of degree n. We obtain an
{(n + 1)-dimensional irreducible representation of SU(2). Consequently the vector bundle
W = §"V with the induced action of @ is a stable Higgs bundle. To be more explicit,

W=Sn(K—l/ZeK1/2)
= K—n/2®. . .@Knlz

with

and, with respect to this direct sum decomposition,

o1 0 o0 . O
oo 1t ¢ - 0
o= : - : @.1)
0 0 1
0 0 - 0 0

Consider now the Higgs bundle where we keep W as the holomorphic vector bundle and
modify ® to be a companion matrix:

0 1 0 0 - 0
0 0 1 o0 0
o=|: (3.2)
0o 0 1
Xy Ay [+ 3} 0

where a,,e Ho(X; K™*!),
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By the openness of stability, we obtain a stable pair for sufficiently small «,,. However,
consider the automorphism 8 of W defined by the matrix:

1
U
B= u?
”n
Then

0 U 0 e 0
0 0 u . 0
Blop = :
B pl Ty e pTlay O

Now (W,B '®p)) is stable from Property 1 in §2. From Property 2 so is
(W, u~' B~ ®p), thus the Higgs field defined by

0 1 0 0

o 0 1 - 0

Y= : .. :
-n-1 -n -2

H %y H Up-y o BT 0

is also stable. Hence, since u occurs with negative powers as multiplier, if (3.2) is stable for
sufficiently small a,,, it is in fact stable for all «,, by taking u sufficiently large.
We now have a family of stable Higgs bundies parametrized by the vector space

6_) HO(Z, Km+l)_
m=1
Recall now that a basis for the invariant polynomials on the Lie algebra of PSL(n, C) is
provided by the coefficients of the characteristic polynomial of a trace-free matrix:

det(x — A) = x"*' + py(A)x""" + - - + py(A).
For the companion matrix (3.1),
det(x — ®) = xttl - alx""l — azx""z — i,

and so our family of Higgs bundles provides a section s of the projection (2.3):

p:M— P H°(Z; K™*).
mm=]1

One consequence of this is that the family is a closed subspace of the moduli space M, for
if a sequence s(x,) converges to yeM, then x, = ps(x,) converges to p(y). Hence s(x,)
converges to sp(y) = y in the same family.

To advance further we need to find an analogue of the symmetric power representation
of SU(2) in SU(n + 1) and of the companion matrix, for an arbitrary simple Lie group.
These are provided by the theory of the principal 3-dimensional subgroup, which we review
next.
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§4. THE PRINCIPAL 3-DIMENSIONAL SUBGROUP

Details of the theory summarized here will be found in Kostant’s three papers [8], [9]
and [10].

Let g° be a complex simple Lie algebra of rank I A nilpotent element ee g° is called
regular (or principal) if its centralizer is I-dimensional. Thus, for examle, in sl(n, C) a regular
nilpotent is conjugate to a matrix like (3.1), with one Jordan block.

By the Jacobson-Morozov lemma, any nilpotent element can be embedded in a 3-
dimensional simple subalgebra (a copy of /(2, C)) in g°. It is generated by a semi-simple
element x and nilpotent elements e and é satisfying the relations:

[x,e] =e; [x,é]=—¢; (e, €] = x.

For a regular nilpotent, this is called a principal 3-dimensional subalgebra.

Under the adjoint action of this subalgebra, the Lie algebra g breaks up as a direct sum

of irreducible representation spaces:
=DV (.1
i=1

Note that there are | summands—indeed, the highest weight vector e; of each V; under
the action of x is annihilated by e, so the /-dimensional centralizer of e is spanned by
ei,...,e. We take ¥, to be the 3-dimensional subalgebra itself, so e = e,.

A principal 3-dimensional subalgebra defines a homomorphism from SL(2,C) to G* and
hence from SU(2) to a compact real form G of G°. This is the generalization of the n-fold
symmetric power of C? which we considered above. We may take then the 3-dimensional
subalgebra to be real with respect to the compact real form of G°. If p is the anti-involution
on g° defining the compact real form, then p(x) = — x and p(e) = € in the 3-dimensional
subalgebra.

Each irreducible summand V; is (see [8]) odd-dimensional and hence a representation
space for SO(3) = SU(2)/ £ 1. In particular it is real. If its dimension is (2m; + 1) then the
eigenvalues of ad x, the semisimple element of si(2, C), on ¥ are the integers m such that
— m; < m < m,. The real Lie algebra g of the compact real form breaks up as in (4.1) into
the direct sum of these real representations.

Denote by g,, the subspace of g° on which ad x acts with eigenvalue m. Then

M
= @D on (4.2)

m=-M
where M = maxm,, and

[8,8;] = i+

We now need to obtain the analogue of companion matrices, details of which can be
found in [9].
We already encountered the highest weight vectors ey,...,e of Vj,. .., V. Consider
now elements of the form
f=é +ae, + -+ ae,. 4.3)

Theorem 7 of [9] proves that there exists a basis p,, . . ., p; of invariant polynomials on
g° such that

pilf) = . (4.4)

Moreover, the degree of p; is m; + 1, where 2m; + 1 is the dimension of ¥} or equivalently
m; is the eigenvalue of ad x on ¢;. These fundamental invariants of the Lie algebra are called
the exponents.



456 N. J. Hitchin

Note that for the linear group SL(n, C), the canonical form (4.3) is not quite the
companion matrix (3.2). Instead it is a matrix of the form

0 1 o - 0
al 0 l . 0
az al 0 1 e O
a,,_l . '.. i
&y  Oy—q - ay oy O

which is nevertheless conjugate to the companion matrix.
Finally, to put one’s finger on regular nilpotents is easy. On the one hand, they form
a conjugacy class which is open and dense in the set of all nilpotent elements. On the other,
we can explicitly write down a regular nilpotent as follows: take a root system A with root
vectors x,, (x€A). Then
e= ) X, 4.5)

xed*

is of course always nilpotent. It is regular iff ¢, # 0 for the simple roots « [8].

§5. THE GENERAL CASE

Given the algebra above, we shall now extend the construction of §3 to the case of
a general simple Lie group.

We begin with the same basic SU(2)-Higgs bundle obtained from a metric of constant
curvature and take the associated G-Higgs bundle defined by the compact principal
3-dimensional subgroup SU(2) — G, G being the adjoint group of the compact real form of
g°. Recall that the connection of the basic solution reduces to U(1), so the structure of the
adjoint vector bundle ad P ® C is determined by the action of U(1) on g° or equivalently the
eigenspaces of the semisimple element ad x. From (4.2) we obtain the holomorphic structure

M
adP®C= P g. @K™ (5.1)
m=-M
The Higgs ficld can then be written
b=, (5.2)
Note that [x,&,] = — &,, so &, €g-,. Hence &, is to be thought of as a section of
@-1®K ")®KcadP®cK.

We now define a deformation of this Higgs bundle by taking the same underlying
principal G*-bundle and modifying the Higgs field to

(D=él+alel+"'+alel (53)

where ¢;e HO(Z; K™*!'). Again, since ¢;€ g, 2;€; is well-defined as a section of ad P ®¢ K.

As remarked in §2, for sufficiently small «; there will be a solution to the Higgs bundle
equations, giving smooth points of the moduli space so long as there are no holomorphic
(and hence covariant constant) sections of ad P commuting with ®. Since the trivial
representation does not occur in the ¥’s (G is simple and so has no invariant linear
polynomial), the basic solution has this property. Thus for small «;, the vector bundle ad P
and Higgs field @ admit a solution to the Higgs bundle equations. It is therefore a direct
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sum of stable Higgs bundles as a vector bundle, a condition which is unchanged upon
multiplying ® by AeC* Now consider the automorphism of ad P® C obtained by
exponentiating x. This gives a C*-action which takes ® in (5.3) to

W=puté +ap™e + +aqu™e.

Since all exponents m; are positive, any Higgs field of the form (5.3) is equivalent to one of
the form A® where a; is small. All members of the family are therefore sums of stable Higgs
bundles and give solutions to the Higgs bundle equations.

The relation (4.4) shows that, as in the linear case, we obtain a section s of

!
M- PHIEZ,K™*!)
i=1
and hence a closed subspace of the moduli space M.

We therefore have a distinguished family of Higgs bundles, isomorphic to a vector space.
From Corlette’s theorem we can reinterpret this as a subspace of the moduli space of flat
G*-connections on X. What remains is to prove that the holonomy lies in the split real
form G".

§6. REALITY

To determine the reality property of the flat connection we need more of the algebra of
principal 3-dimensional subalgebras, contained in the following proposition:

ProposiTION (6.1). Let g° be a simple Lie algebra with principal 3-dimensional subalgebra
{x,e,,é ) and let e,,. .., e be the highest weight vectors of the irreducible representations
V,..., Vi< g Define 6 by 6(e;) = — e; and 6(€,) = — &,. Then,

(1) o extends uniquely to a Lie algebra involution of g°.
(2) The fixed point set of a consists of the complexification of a maximal compact
subalgebra of the split real form g" of g°

Proof. First note that if ¢ extends to an automorphism of g°, then
o((adé,)*e) = (— 1)**'(ad &, ) e;. (6.2)

Since the vectors (ad &, )*e;, (0 < k < 2m; + 1), form a basis for ¥, then o is determined by
the property ole;) = — ¢;, 6(é,) = — é,.

Now define the involution o on g° = @)=, V¥ by (6.2). We need to prove that it is a Lie
algebra automorphism.

Let w(a) denote the eigenvalue of the semisimple element x on a basis element a of the
form (ad &,)*e;. Then (6.2) can be rewritten

g(a) = (— fymrw@+ig (6.3)
Thus, for basis vectors ae ¥, be V)
[o(a), 6(b)] = (— Qym*mirt=@+w®irg b)), (6.4)
On the other hand,
E

k=1
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where each ¢, e ¥, has eigenvalue w(a) + w(b) and (since each eigenspace of x in ¥ is
one-dimensional) is therefore a multiple of a basis vector.
Hence,
1
0[0, b] - Z (_ l)w(¢)+w(b)+1+muck' (65)

k=1

Thus to prove that a[a, b] = [o(a), a(b)], it suffices to prove that
m+my=m+1 mod 2. (6.6)
Now the Lie bracket in g° defines an SO(3)-invariant element of
Hom(V;® V;, ®k=1 W)

Each ¥ is isomorphic to the irreducible representation $2™, the 2m;-fold symmetric power
of the defining representation of SU(2), and we have the Clebsch~Gordon decomposition of

the tensor product:

SZnu ® S2m, ~ @;niném..m,)szm,+2m,—2k_

The projection onto the irreducible factor §2™* 2™~ 2k {5 defined by contracting k times
with the skew form w on C2? which SU(2) leaves invariant. The Lie bracket must factor
through this decomposition.

Consider vectors a;€ ¥, = S*™ and a;€ V; = $?™ which are annihilated by ad x. If we
represent S2™ as homogeneous polynomials of degree 2m in the variables (z,, z,) then q; is
a multiple of zf'z3". It is elementary to note that contracting z{"z5 with z{¥z5¥ an odd
number of times with w gives zero (from the skew-symmetry of w) and an even number 2k of
times gives a non-zero multiple of (z, z;)™*™ ~2*, Now in the decomposition ¢° = P, ¥,
the vectors annihilated by ad x (the centralizer of x) constitute an I-dimensional subspace
with one basis vector in each V. Since x is semi-simple this means that it is a regular element
and hence its centralizer is abelian—a Cartan subalgebra. From the above discussion this
means that the Lie bracket of a; and g, is zero, so that the corresponding element of
Hom(V, ® ¥}, @i=, W) takes values only in those ¥; for which

m=m +m;—2k— 1.

In other words, ¢, in (6.5) is zero unless m; + m; — m, is odd. This is precisely statement (6.6),
hence ¢ is indeed an automorphism of g°.

Note in passing that the above argument shows that the highest weight representation
§2m*2ms does not occur in the image of the Lie bracket, and so [e;, e;] = 0 where ¢, ¢; are
highest weight vectors in ¥}, V. Thus the centralizer of a regular nilpotent e, is abelian.

For the second part of the proposition, recall that a real form of a complex Lie algebra is
an antilinear involution. If there is a Cartan subalgebra invariant by the involution on
which the Killing form is negative definite, then we have a compact real form. If there is one
for which it is positive definite, it is called a split (or normal) real form. Compact and split
real forms are unique up to conjugation.

To link the automorphism ¢ defined above with split real forms, we need to find an
appropriate Cartan subalgebra. We repeat here for convenience an argument of Kostant [8,
Lemma 6.4A] giving the required construction.

Let x,, (x€ A), be root vectors which satisfy the standard relation

[x,, X_.]=«a (6.7)

where the Killing form identifies roots with elements of a Cartan subalgebra b. The usual
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compact real form p is the antilinear extension of
p(xs) = x_q; pl@)= —a.

Let ¢ be the highest root and in terms of the simple roots «,, . . ., a; write

v=73 qu (6.8)

where g; > 0. Now define

~

1/2
€ = Z ‘hl Xay
i=1

From (4.5), e, is a regular nilpotent element. Now if
!
él = Z q‘llzx_"
i=1
then

[el’él] = z ql[xm’x-m]

(=1
!
= z qi%
i=1
=y
and {e,, ¥, é, ) is a principal 3-dimensional subgroup invariant under the compact involu-

tion p.
We consider now z = e, + x_, and p(z) = &, + x,. Then,

(2, 02)] = [es + %-y. & + %]
=v-y
=0

since [x,,, X, ] = 0 as  is the highest root.
Thus z is normal and hence semi-simple. The subalgebra we seek is its centralizer. To
show this we consider y such that [y, zZ] = 0 and write

y=v+x+u

where ven_, the nilpotent subalgebra generated by the negative root vectors, xeb, the
Cartan subalgebra, and uen., generated by positive root vectors. Then,

O0=[z,y]=1[es + x_y, v+ x + u] (6.10)

Now [x_,, v] = 0 since  is the highest root, and similarly [x_,,u]eh@ n_. Since xeb,
then [x_y, x] = — ¢(x)x_,. Also, [e,, v]ebh @ n_. Thus, projecting (6.10) onto n, gives

[e, u] + [e,,x] =0.

But [e,, x] lies in the span of x,,,. . ., x,, and [e,, u] involves higher root spaces, so each
term vanishes separately:

[eh“]=0; [el,x]=0

Now the centralizer of e, consists of nilpotent elements so, x being semi-simple, we must
have x = 0. Thus y = v + u where u commutes with e, .
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Suppose now that u = 0, then (6.10) gives
0=1[e, +x_y,v] =[e;, V]

But the centralizer of e, lies in n, so v = 0 and y itself vanishes. The map y + u therefore
gives an injective linear map from the centralizer of z to the centralizer of e,, which is
I-dimensional from the regularity of e,. Consequently, z has centralizer of dimension <[
the rank of g°, and hence equal to I. Thus z is regular and its centralizer is a Cartan
subalgebra })’. Moreover, since [z, p(z)] = 0 it is also the centralizer of p(z) and is thus
preserved by the compact real structure p.

The principal 3-dimensional subgroup is real with respect to p, as are the irreducible
subspaces ¥;. The involution o, alternately + 1 on the weight spaces of V;, preserves the real
structure, so gp = po = tis an antilinear involution of g° giving another real structure. Now
since by definition o acts as — 1 on the centralizer of e, and &,, it acts as — 1 on the Cartan
subalgebra by’, each of whose elements is of the form y = u + v, with 4, v in the centralizers of
e;, &,. Thus 1 preserves b’ and moreover if yel’ is fixed by p, then

t(iy) = op(iy) = a(—iy) = iy

Hence since the Killing form is negative definite on the fixed point set of p, it is positive
definite on the fixed point set of 7. Thus t defines a split real form g” of g°.

Finally, decompose g° as a real vector space into a direct sum of common eigenspaces of
the commuting involutions ¢ and p:

=01 DPgIlDgi Dg=

where the upper index gives the sign of the g-eigenvalue and the lower one the p-eigenvalue.
The fixed point set of o is
9" =gl @gl.

This is a complex Lie algebra with real structure defined by p—the complexification of the
real Lie algebra g% on which the Killing form is negative and hence g3 is a compact real
form of g°.

On the other hand, the split real form g” is the fixed point set of op, so

g =gl ®g:.

Here the Killing form is negative on g1 and positive on g2, so g” is the complexification of
the maximal compact subalgebra g¥ of g” as required.

Remarks (6.11).

1. The involution o of Proposition (6.1) has been defined here in a uniform way for all
simple Lie algebras. In fact P. Slodowy has pointed out that for Lie algebras of type B,, C,,
D,,, E;, Eg, Fy and G, it is the inner automorphism defined by a rotation of n in the
principal 3-dimensional subgroup SO(3). For the remaining cases of A,, D3,+; and Eg this
involution composed with the outer automorphism corresponding to the 2-fold symmetry
of the Dynkin diagram gives o.

2. Since both ¢ and p in the proof of the Proposition preserve the principal 3-
dimensional subgroup, it follows that there is a split principal 3-dimensional subgroup,
a homomorphism from PSL(2, R) to the split adjoint group G". In the linear case this is clear
since the defining representation of SL(2, R) is real and so therefore is its nth symmetric
power, giving a homomorphism from SL(2, R) to SL(n + 1, R).
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§7. FLAT CONNECTIONS

As pointed out in §2, a solution of the Higgs bundle equations for a compact group
G defines a flat G°-connection
V=V, 4+ 0+ 0" (7.1)

We here define x — — x* as the compact real structure p on g° in the general case.
For the family of Higgs bundles constructed in §5, we have a Higgs field defined by (5.3):

(D=§1+alel+"'+a,e,

and from §6 there is a natural involution on the Lie algebra bundle (5.1):

M
adP®C= P g.®K"
m=-M
for which o(®) = — @. Let (4, ®) be the corresponding solution to the Higgs bundle
equations (2.1):
F + [0, 0*]=0.

Then clearly (4, — ®) is also a solution. But so is (6*4, c*®) = (6* A4, — ). From the
uniqueness part of Simpson’s theorem (a consequence of the basic principle that holomor-
phic ®-invariant objects are covariantly constant) we see that

6*A = A (7.2)

In other words, the holonomy of the connection A reduces to the intersection of G and the
fixed point sct of o, which from Proposition (6.1) is contained in the maximal compact
subgroup K of the split real form G of G*.

As we saw in §6, the antilinear involution t = po defines the split real form, so in our
context we have a reduction of the principal bundle from G° to G". Moreover,

1*A = (po)* A
=0*A since A4 is a G-connection
=A from (7.2) (7.3)

and
D + O*) = (pa)*(® — p*(D))
=0*(p*(®) — )
=—p*(®)+ D since g*® = — @
=0 + P*
Thus the connection V, + ® + ®* has holonomy contained in G".
From this we directly obtain our main theorem:

THEOREM (7.5). Let G° be the adjoint group of a complex simple Lie Group and G" its split
real form. Let my,. .., m be the exponents of G° and let «,, . . ., «, be holomorphic differen-
tials of degree m; + | on a compact Riemann surface T of genus g > 1. Then the solution to the
Higgs bundle equations corresponding to '
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defines an isomorphism from the vector space
1

@ HO(E; K™Y

i=1

to a component of the moduli space of flat completely reducible G"-connections on Z.

Proof. We have already seen in §5 that these solutions provide a section s of
p:M— @i., H°(Z; K™*') taking values in the smooth points of M. Corlette’s theorem
identifies M as the moduli space of completely reducible flat G°-connections and the
argument above shows that for our family these are actually G'-connections. The image of
sis therefore a closed submanifold of this space of connections (the derivative of s is injective
since pos is the identity).

But now the dimension of the moduli space of flat G"-connections is (by using the index

theorem, for example)
2(g — 1)dim G".

On the other hand, the real dimension of the vector space Pi-; H*(Z; K™* ') is, by the
Riemann-Roch theorem, equal to:

1 1
2) Cm+1)g-1)=2¢g-1 ¥ dimc¥  (cf. §4)
im

(=1
= 2(g — )dim¢ g° from (4.1)
= 2(g — 1)dim G"

Thus the image of s is an open and closed submanifold which is connected and is hence
a component,

We shall call this component the Teichmiiller component. In the case of G" = PSL(2, R)
it can be directly identified with Teichmiiller space, the space of equivalence classes of
conformal structures on the surface £, modulo diffeomorphisms homotopic to the identity.
A proof of this is given in [6], where the quadratic differential «, € H°(Z; K?) in the theorem
is used to define a metric of constant negative curvature. If, in the general family of (7.5), we
take ay; = a3 =--- =g =0, then we have an embedding of Teichmiiller space in the
Teichmiiller component. This is nothing more than the space of flat G'-connections
associated to the uniformizing representations of n, () in PSL(2, R) by the split principal
3-dimensional subgroup PSL(2, R) « G" of Remark (6.11). These generalized Teichmiiller
spaces are therefore extensions of ordinary Teichmiiller space.

§8. OTHER COMPONENTS

To understand better the réle of the Teichmiiller component we shall here calculate all
the components of the space of flat completely reducible connections in the linear case—the
split real form PSL(n, R). Note that in general we can use the topological classification of
principal G'-bundles to provide at least some separation into disjoint classes of spaces of
connections. This is equivalent to classifying principal K-bundles where K is the maximal
compact subgroup of G". In the case where G" = Sp(2n, R), then K = U(n), so we have in
particular an integer invariant—the Chern class. The linear case is somewhat easier,
however, since the maximal compact subgroup in the adjoint group PSL(n, R) is SO(n) for
n odd and SO(n)/ + 1 for n even. The topological classification here for n > 2 is given by
elements of the cohomology group H2(X; Z) where Z is the centre of Spin(n), the simply-
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connected covering group. We obtain:

H*(Z;2)= 27, n odd
=27, n=2mod 4
=Z,x2Z, n =0 mod 4. 8.1

Our strategy for finding the components within a given topological class will be to solve
the Higgs bundle equations and consider the function f defined by:

f(A4,®) =i f tr(®D*). 8.2)
z

It is a consequence of Uhlenbeck’s weak compactness theorem (see 6]) that this non-
negative gauge-invariant function is proper on the moduli space M of Higgs bundles. Thus
on each component of the closed subspace of M which gives flat PSL(n, R)-connections it
must have a minimum. Our primary aim will therefore be to seek all local minima of fon the
corresponding space. For simplicity we shall first consider only those connections which lift
to SL(n, R), since in particular this is where the Teichmiiller component lies.

Firstly, we should determine which Higgs bundles give flat SL(n, R)-connections. For
this, note that the involution ¢ on sl(n, C) which relates the compact real form p and the
split real form t can be taken to be

o(x) = — xT.

Now if the connection A has holonomy in SO(n) and ® = ®7, then ¢*(4) = 4 and
g*® = — @, so the arguments of (7.3) and (7.4) show that

Vi+ O+ O*

has holonomy in SL(n, R). Conversely, the methods of Corlette and Donaldson for finding
the Higgs bundle from a flat connection involve a reduction from SL(n, R) to its maximal
compact subgroup by means of a harmonic section of the associated SL(n, R)/SO(n) bundle,
which forces 4 and @ to be as above.

In purely holomorphic terms, we seek a Higgs bundle consisting of a vector bundle
V with a non-degenerate quadratic form (an orthogonal bundle) and a Higgs field
®e H°(Z; End ¥ ® K) which is trace-free and symmetric with respect to that form. Thus we
have a non-degenerate holomorphic quadratic form

Q:VRV-C (8.3)
and such that
Q(®v, w) = Q(v, dw)e K. (8.4)
The function f = i [z tr(®®*) has a close relationship with the circle action
© — e,
In fact, if we consider the space &/ x Q of pairs (A4, ®) (where 4 is a G-connection and
®eQ'°(X; ad P ® C)) as an infinite-dimensional flat Kihler manifold with Kihler metric

(A, &)1z = 'ftr(A AsA+d* A D)

then f is the moment map of the circle action in the sense that

gradf=IX (8.5)

TOP 31:3-8
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where X is the vector field generating the circle action. This property descends to the moduli
space M which has (on its smooth points) a natural Kahler metric induced from the one
above and compatible with its holomorphic structure as the moduli space of stable Higgs
bundles (V, ®), (see [6]). In particular, (8.5) shows that smooth critical points of f are fixed
points of the circle action ® — e ®. These are of two types: where ® = 0 or where there is
a 1-parameter group of covariant constant gauge transformations which induces the action
on ®. The involution ® ~ — ®T commutes with the circle action, so the critical points of
J on the subspace M, of orthogonal bundles ¥ and symmetric Higgs fields ® (which is
determined by the involution) are still critical points on M.

Hence, finding local minima of f involves first finding the smooth fixed points of the
circle action on M, and identifying those for which the Hessian is non-negative. The
singular points of M, consist of direct sums of stable Higgs bundles of lower rank and so in
particular sums of lower rank smooth minima. A second variation argument at these
singular points must than be used to examine the reducible cases.

To analyse the second variation, note that in all cases the l-parameter group of
covariant constant gauge transformations is generated by ¢ e Q°(Z; ad P) such that

dy =0 (8.6)
and
[y, ©] = iD; [Y, ®*] = — id*. 8.7)

To check that this gives a critical point of f, we note that
f=i ttr((i)(D" + Od*)
= iL tr(id[y, ©*] — iy, ©]d*) by (8.7)
=—i L te(iy ([®, D*] + [D, ©*])

= iJ tr(iyy dA).
b3

This last formula follows since (A4, ®) satisfies the linearization of the Higgs bundle
equations (2.1):

dA + [®,0%] + [0, 4*] = 0. (8.8)

But now
fn(.pdﬁ): —f tr(d yA) =0
T z

from (8.6), so fis certainly critical at these points.
Taking a second derivative of (8.8) gives:

duA + [0, 0%] + [0,0*] + [4, A] +2[$,*1 =0 (8.9)

and then

f=i| t(@0* + 0D*) + tr(dD* + dD*).
z
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Making a similar substitution as above, but with (8.9) replacing (8.8) gives

f=i| t(y([4, A] + 2[®, ®*])) + 2tr dD*
z

=i J‘ tri[y, A14 + 2i[y, D] O* + 200*). (8.10)
z

Now A4 represents a variation in the holomorphic structure of ¥ and ¢ a variation in the
Higgs field. The natural complex structure on both these spaces of variations is defined by

(A, ®) > (— + 4, id)
recalling that the (0, 1)-component of the connection defines the holomorphic structure.
Suppose the circle acts with weights m, n on the complex vector (A, ®), then

Y, Adl= —m+4; [y, d]=ind

and substituting in (8.10) we obtain
f=i| tr(—ims A4 A A —(2n — 2)Dd*).
I

Thus, if m > 0 or n > 1, the variation is negative in certain directions. Note that the
argument here works for both smooth and singular points of the moduli space provided the
infinitesimal variation (4, ®) is tangent to an actual smooth family of deformations.

§9. LOCAL MINIMA—THE HOLOMORPHIC YIEWPOINT

The space T of infinitesimal deformations of the Higgs bundle equations can be defined
using elliptic complexes as in ([6] §5) but also has an equivalent description using sheaf
cohomology groups as in [12]. There is an exact sequence (9.1):

a 8
0-H°Z;adP®C)— H°(X;adP@®K)—> T

P H'(Z;ad P®C)— H'(Z;2d P® K) — 0.

Here a and § are defined by the Lie bracket with the Higgs field ®e H°(Z; ad P ® K). The
homomorphism y is the natural map associating to an infinitesimal variation (A, ®) the class
represented by A% !1eQ%!(Z;ad P® C). For a smooth point of M, T is the tangent space,
so that every vector in T is tangent to an actual deformation. At a singular point this is not
necessarily so, and each vector must be individually analysed.

We are concerned here not with the whole tangent space to M, but with that of the
subspace M. Here the bundle has a quadratic form (8.3), defining an isomorphism from
V to V'* and an infinitesimal deformation of this structure lies in the cohomology group of
skew-symmetric endomorphisms H!(Z; A2 V). The Higgs field is symmetric and trace-free
and therefore lies in the space H°(Z; S3 V' ® K), the subscript 0 denoting trace-free. The
infinitesimal deformation space Ty = T then fits into an exact sequence (9.2):

0= HOE; A2 V) —— HOE: S2V ® K) ——s T,

L HY(Z: AV) —— H'(E; S2V ® K) = 0.
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Thus, at a local minimum of f at a smooth point of M,, the circle action must have
weights m; < 0 on Kerd and weights n; <1 on Cokera. This will be our criterion for
identifying the irreducible local minima.

Let (V, @) be a stable Higgs bundle which represents a fixed point of the circle action.
Then the eigenspaces of the infinitesimal gauge transformation  break V up into a direct
sum of sub-bundles:

V=@U, (9.3)
where ¥ acts as im on U,,. Since
[y, ©] = id,
then
o:U,- Uy ®K. (9.4)

(This is called by Simpson [13] a “variation of Hodge structure™) In our case ¢ is
skew-symmetric so we have:

Q(¢“m, “n) = - Q(um’ '//un)
and Q(u,, u,) = 0 unless m + n = 0. Since, moreover, Q is non-degenerate, we have
U..= Uk 9.5)

(Note that as the consecutive eigenvalues of y differ by 1, (9.5) implies that they are integers
when there is an odd number of summands, and half-integers for an even number.) Finally,
the Higgs field ® is symmetric, so under the isomorphism (9.5) ®: U_,-»U_,., ® K
transforms to the dual of ®: U,,-, » U, ® K.

Our first step towards finding the minima of fis the following (unfortunately rather long)

lemma:

LEMMA (9.6). Let (V, ®) be a stable Higgs bundle in Mg which is a local minimum for f.
Then either ® = 0 or each U,, in the decomposition (9.3) is a line bundle.

Proof. From (9.5) we have V = G—):‘,,s -nUm. We consider the top component U, first.

Now from (9.4),
oU,)=0

and so U, is ®-invariant. By stability (cf. §2),

degU,/tk U, < degV/tk V 9.7)
but since ¥V = V*, we have deg V' = 0. Hence,

degU, < 0.
In general, let d,, = degU,, and r,, =1k U, so
d, < — 1. 9.8)
Now consider A2U, = A?V. We find
deg AU, = (r, — 1)d,

which, from (9.8), is negative if r, > 1.
Hence by the Riemann—Roch theorem,

dimHY(Z; A%U,) > —degA2U, + (g — )tk A2U, > 0.
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Therefore, the space H!(Z; A2 U,), which is a direct summand in H*(Z; A? V) with positive
weight, is non-trivial. On the other hand, recall that the map &: H'(Z;AlV)—
H'(Z; S}V ® K) is given by the Lie bracket with ®. Since ®(U,) =0, H!(Z; A2U,) is in
Ker & and so this contradicts the assumption of minimality of f. It follows that we must have
r.= 1 and U, is a line bundle. Ultimately, we shall proceed inductively from this point of
departure, but we need to establish some estimates first.

Suppose U, is a line bundle. Now ®: U, _; — U,K is not identically zero, since we are
assuming that (V, @) is stable, and in particular irreducible, as a Higgs bundle. Thus @ is
generically surjective and there exists a sub-bundle W,,_, = U, - such that ®(W¥,,_,) =0
and U,-,/W,_,=L,_, is a line bundle. The homomorphism ®: U,_; = U,K then
factors through a homomorphism of line bundles ¢: L,,_, — U, K. In particular, we must
have

degL,-, <degU,K=d,+ (29 -2).

Now since ®(W,,_;) =0 and ®(U,) =0, the image of H*(Z; W,,_; ® U,) in the co-
homology group H!(Z; U,-, ® U,) is annihilated by ® and has positive weight if
m — 1 + n > 0. By the minimality of fit must be zero, and hence from the exact cohomology

sequence of
0- Wm—l ® Un_’ Um—l®Un—’Lm—lUn-’0

the coboundary map (or Bockstein)
B:H°(Z: L, U,)» H'(Z; W,-, ® U,) 9.9

must be surjective. We shall estimate the dimensions of these spaces.
Firstly, from Riemann-Roch,

dlmHl(Z, Wm—l ® Un) - dcg(Wm—l ® Un) + (g - l)rk Wm—l
= —degW,_.,+(@g—1—d)rk W,_,. (9.10)

Now since ®(W,,_ ) = 0, W,,_, is a ®-invariant sub-bundle of ¥ and so by the stability of
v, o), if W,_, #0,
degW,-y < — 1L
Thus (9.10) gives
dimH!(Z; W,,-,QU,)=>g —d,. (9.11)

Now consider the dimension of H°(X; L,,-, U,). From (9.11) and (9.8) if rk W,,_, > O thisis
at least g + 1, since B in (9.9) is surjective. Hence the degree of L,,_, U, is at least 2g. Since
degL, -, < degU,K =d, + 2g — 2, this means that

dm+dy 2 2. %.12)

As a first example of the use of this, take m = n and then (9.12) gives d, > 1, contradic-
ting (9.8). We deduce immediately that rk W,_, = 0 and therefore U,_, is a line bundle.
Takingm =n — 1 givesd,_, + d, = 2. But U,_, ® U, is a ®-invariant sub-bundle, so by
stability d,., + d, < — 1. This is again a contradiction, so U,_, must be a line bundle.

We introduce now another argument which will give more control over the degrees d,,,.
If U, and U,,, are line bundles, then since (¥, ®) is irreducible, ®: U, - U, K is
a non-zero homomorphism. Take the induced map on cohomology:

¢ H'(Z; UnU,) = HY(E; Uns UKD,

This map is surjective since the quotient sheaf is supported on points. But as ®(U,} = 0, the
kernel of ¢, is a subspace of H!(Z; A? V) for (m < n) which is annihilated by ® and is of
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positive weight if m + n > 0. By minimality the kernel must be zero, so ¢, is an isomor-
phism.
Now consider
S2Up+1 S S3(DUY=S3V.

If 2m+2>1, then any seH°Z;S*U,,,® K) must be in the image of
®: A2V - S2V ® K by the minimality of f, for otherwise the cokernel would have a sub-
space of weight > 1. In the decomposition

ALV = AX D U,
we have (D(AZUI)Q U1® U|+1 ®K and
U, @U)cs Ui QUi K+ U@ Ui, K.

Thus if s = ®(u) is a section of S2U,,,, ® K, then u must have a non-zero component u, in
Upn® Upyy. If P denotes the projection from SV ® K onto S2U,,+; ® K, then

5 = PO(uo) = ¢o(uo)

where the map ¢o from U, ® U, +; to S2U,+, ® K is just the symmetrization of @ ® 1.
We see therefore that

G0 HOZ; U ® Upsy) = HY(Z; 82U+ ® K)

is surjective if 2m + 1 > 0. However, if as above U,, and U, ., are line bundles, ¢, is
injective, for it is simply multiplication by a non-zero section of U%U,,+, K. In this case,
then, ¢ is an isomorphism.

To summarize, if U,, and U, are line bundles

¢:H'(Z; U, U,) = H' (Z; Ups U K) (9.13)
and
$o: HY(Z; UpUpsy) = HO(Z; U2, K) (9.14)

are isomorphisms if m+ n>0and 2m + 1 > 0.

A special case of the above argument is to consider the isomorphisms ¢, for m = n and
¢, for m = n — 1. These give isomorphisms of H® and H! for the line bundles U,U, -, and
UZK. In particular, the Riemann-Roch theorem implies that they have the same degree, so
®eUY_ U,K is a non-trivial section of a line bundle of degree zero and hence an

isomorphism. Thus:
Un-1 =2 UK (9.15)

andd,_, =d, + 2(g — 1).

We have seen already that U, -, is a line bundle, so we can consider (9.13) and (9.14) for
m=n— 2. Nowifd,_, > 0, the line bundle U2_, K has no base points (by Riemann-Roch)
and so the isomorphism ¢, in (9.14) must come from an isomorphism of line bundles
Up-2Up-y =2 U2 K,s0U,-; = U,., K. On the other hand, if d,_, < 0 then the degree of
U, =U,.,U,K (by(5.15)) is negative and so H*(Z; U,_, U.K) has dimension given by
Riemann-Roch. Since U,_, U, then also has negative degree, the isomorphism ¢, implies
degU,-, =degU,_ K and so ®:U,_, - U,-,K is an isomorphism in this case too.
There remains the situation d,_, = 0. Now if U2_, is trivial, U2_, K = K has no base
points, so we again get an isomorphism U,_, = U,_,K from (9.14). If UZ_, is non-trivial,
then dimHY(Z; U2_\)=g —1 and if degU,_, U, <degU2_, =0 then Riemann-Roch
gives dimH!(Z; U,-,U,)= —dy-; —d, +g— 1. Thus if ¢, is an isomorphism, then
d,+d,., =0. Together with d,_., = 0 this gives d,_, + d,-; + d, = 0 which contradicts
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the stability condition for the ®-invariant subbundle U,_, ® U,.-; @ U,. In all cases then
degU,_; = degU,_, K and so ® defines an isomorphism

Up-=U,_,K=U,K2

After having seen the pattern and techniques, we can now start the induction to prove
the lemma.
Suppose inductively that U,,, ..., U, are line bundles and for all k > m,

U= U,K" % (5.16)

We have seen above that this is true for m = n,n — 1 and n — 2, so we may as well assume
that m < n — 1. Now in particular the degree of U, is given from (9.16) by

do =d, + 20— k)(g — 1). (9.17)
Assume now that rk U,,_, > 1, then the Riemann-Roch inequality (9.11) gives
dimH'(Z; W,_.,®U,) =g —d,.
But
degL,- U, <degU,U,K
=2d,+2(n—m+ l)(g-1) from (9.17)
Hence, since B in (9.9) is surjective we must have the inequality:
2d, +(2n-2m+)g—-1)=2g—d,
or equivalently
d,+2n—m)g-1 = 1. (9.18)
But now stability of the ®-invariant sub-bundle U, @ - - - @ U, implies
0>d,+- +dy=n—m+ )d,+(n—m)(n—m+ l)(g — 1)

where we have used (9.17).
Thus d, < — (n — m)(g — 1) and substituting in (9.18) this gives

—(r—m)g—-1)>1

which is a clear contradiction.

We deduce by induction that if m > 1/2 and U,,, ..., U, are line bundles, then so is
Up-1y-

Now we need to show that U, _, = U, K, and for this we consider first (9.14) with m + 1
replaced by m. Using the hypothesis U, = U,K""*, we have an isomorphism

HO(E; Up-y U, K"™™) — HO(Z; UK 22701y,

Ifd, > — 2(n — m)(g — 1) the line bundle U2 K2"~2™*! has no base points in which case the
degreesof U,,-, and U,K""™*! are the same and so the homomorphism ® between them is
an isomorphism. Similarly, considering (9.13) with m + 1 replaced by m, we have an
isomorphism

H'(Z, U, U,y HY(Z; UZK"~™* 1),

If d, < —(n—m+ 1){g — 1) then Riemann-Roch gives the dimensions of both spaces,
and so again U,_, = U,K"™™ If neither of these inequalities holds, then
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—(n—m+ 1)(g—-1)<d, < — 2(n— m)(g — 1) which yields
n-m-1g-1<0

which for m < n — 1 is a contradiction. We have thus completed the induction and U, is
a line bundle for m 2 0. Using the duality U_,, = U2 we have the result for all m and so
have proved the lemma.

‘Note now that the proof of the lemma gives more information, namely if n > 1/2 then
U, = U,K"™™ the isomorphism being given by the Higgs field ®. If V'is of odd rank 2n + 1
there is an odd number of U/s and in particular a bundle Uy,. Since Uy = U§, then U is
trivial and U, = U,K". Hence,

vV~ Uo ®{ 6_) Km} = UO ®SZII(K‘1/2 ® Kl/z).
Projectively, this is equivalent to the basic Higgs bundle in §3.
Similarly, if ¥ has even rank 2n 4+ 2, U}, @ U_,;; = U,;;K and so

V= SZn+1(K-l/2 @ Kl/Z).
We thus obtain the following proposition:

ProrposiTION 9.19. Let (V, ®) be a stable local minimum of f on My, then (V,®) is
isomorphic to one of the following:

(1) a stable bundle V with ® =0

(2) a rank 2 Higgs bundle of the form V = L @ L*, with ® a non-zero section of L™*K

(3) a Higgs bundle of the form V =S"(K~Y2@® K'2) with ®: K™*' - K"® K the
identity.

All we need note for the proof here is that the isomorphism U,-| = U,K required
n > 1/2 and therefore is not valid in rank 2. In fact the Higgs bundles of type (2) lie in
different components depending on the degree of L and are actually minima of f (see [6]).

§10. GENERAL MINIMA

So far we have found candidates for the minima of f = ij; tr ®O* which are stable (or
irreducible) and correspond to smooth points of the moduli space. It remains to eliminate
the non-trivial reducible ones. Suppose then that (V, @) is a direct sum of two irreducible
Higgs bundles (¥, @ V;, ®; @ ®,) and is a minimum for f. Varying each individually shows
that (V;, ®,) and (V3, ®,) must be one of the three types of Proposition (9.19). If they are
both of type (1), then since f = 0, we are clearly at a minimum, so let us first consider (¥, ®;)
of type (1) and (V2, ©,) of type (2).

Thus ¥, is a stable bundle (with a flat SO(n)-connection) and ¥V, = L@ L* with
deg L > 1 by the stability of (V;, ©,) since L* is ®,-invariant. Consider the space

HY (Z; @ L*) S HY(Z; Vi ® V) € HU(Z; APY).

Since V] has zero weight and L* weight 1/2, this subspace has positive weight. Moreover,
®(V,) = 0 since @, = 0 and ®(L*) = 0 since ®,(L*) = 0. The subspace is also nontrivial
since a standard vanishing theorem using the flat connection on ¥, shows that
H°(Z; ¥, ® L*) = 0 and hence by Riemann-Roch,
dmH!(E; V@ L*)= —~degV,®L* + (g — )ik
=(g—1+degL)tk ¥; > 0.
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We therefore obtain a contradiction to minimality so long as we can prove that this
infinitesimal deformation can be integrated to a one-parameter family.

To do this, let us consider how a class [2]e H'(Z; ¥; ® L*) can be used to construct
a Higgs bundle. The obvious way to construct a vector bundle from such a cohomology
class is as an extension:

0OV ->W,-L-0.

However, if V] is an orthogonal bundle, we can construct also an orthogonal bundle of rank
two greater than rk ¥;. In terms of transition functions, we take

't '« 0
0 G -a
0O o l

where G is a transition matrix for ¥} which preserves the quadratic form, ! and /™? are
transition functions for L and L* respectively, and a« is a Cech representative for
[«Je HY(X; ¥; ® L*). This defines a bundle W with a quadratic form, a projection to L and
an inclusion L* ¢ W whose quotient is the extension W, above.

We canonically define an associated Higgs field by:

o,
OQWSL— L*K->WQXK.

Multiplying « by a scalar A provides the one-parameter family of deformations of the Higgs
bundle in the direction [«]. We deduce therefore from the positive weighting, that a bundle
of this type cannot be a minimum for /.

The other cases can be dealt with in a similar manner, taking the highest weight
eigenspace of y from each factor. Thus, if ¥; = @h--,Un and V; = @}._, W, then we
take aclassin H'(Z; U, ® W,). This is annihilated by ® and is contained in H'(Z; A2 V' )—it
is non-trivial by stability and degree considerations. If U, # U_, and W, # W_, we form
the extension

i 4
0-U,—E—W_,-0

from this class and define

n-1 -1
V= @IUM@E@ eaﬂw,@s*.
m=—n+ r=-3

The corresponding Higgs field is given by
¢(“-n+1’- e Up1, € Woghg, .. -:W:—l'é)
= (& Oytcpaysn ey Oyth g, iD iy, PO, ByW_yry, ..., Byw, g, p*Dyw, ).

IfU, = U_-,then Uis of type (1) and the construction is just like the first case considered
above. In each case, unless ® = 0, we obtain positive weights and hence directions in which
the function f has negative second variation. Thus we obtain;

ProrosiTion (10.1). Let (V, @) be a local minimum of f on M, with tk V > 2, then either
©=0 or (V,®) is equivalent to a Higgs bundle V =S"(K~'*@ K"Y?) with
®: K"t - K™ ® K the identity.

Now consider the general case of a flat PSL(n, R)-bundle, which does not lift to an
SL(n, R)-bundle. We need to modify the vector bundle V to have a quadratic form @ with

TOP 31:3-C
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values in a line bundle L of degree 1:
0:V@V-L

In particular, ¥* = V'® L*. The structure of the arguments in §9 and above remains
unchanged but the inequalities in Lemma (9.6) are changed slightly. This necessitates
occasionally dealing with the special case g = 2 in isolation, but the result remains the same.
We leave the details to the reader. The conclusion is that the corresponding moduli spaces
for n > 2 are connected, since our Teichmiiller components consist of bundles which lift to
SL(n, R).

Putting these results together we obtain the following:

THeOREM (10.2). Let X be a compact oriented surface of genus g > | with fundamental
group n,(Z). Denote by Hom™ (n, (X); PSL(n, R)) the space of completely reducible homomor-
phisms from 7 (X) to PSL(n, R), and M* the quotient space by the conjugation action of
PSL(n, R). Suppose n > 2. Then if n is odd, M* has 3 connected components and if n is even
M* has 6 components. In the first case one of the components is diffeomorphic to R®* ~ D@ - 1),
in the second case two.

(Note that, for purposes of comparison, the corresponding result for n = 2 ([4], [6]) is
that M* has 4g — 3 components, two of which are diffeomorphic to R ),

Proof. By the properncss of f, each component must contain a minimum. But Proposi-
tion (10.1) shows that the only minima are either flat PSO(n)-connections (the case of ® = 0)
or a connection which we showed in (7.5) to lic in the Teichmiiller component. Certainly
since ® # 0 for any Higgs bundle in the Teichmiiller component these are disjoint possibil-
itics. On the other hand, we know from [ 1] that the moduli space of flat PSO(n)-connections
on a fixed bundle is connected. Thus it is only the topological type of the underlying bundle
which distinguishes the components containing compact group connections.

The topological type of those bundles which give the Teichmiiller component can easily
be determined. Firstly, they arise from flat connections on a vector bundle, so we are
constdering homomorphisms from ,(Z) to PSL(n, R) which lift to SL({n, R). Beyond this,
for n > 2, it is the second Stiefel-Whitney class w,(E) of the associated rank n real vector
bundle E which defines the topological equivalence class.

In the odd case n = 2m + 1, the complexification of E is

V=@ K

Il=-m

and the real structure (as described in §6) gives
Ez1® @K
=1

as a real vector bundle. Thus w,(E) is the mod 2 reduction of the first Chern class of this
complex vector bundle. This is zero since ¢,(K') = 2l(g — 1) = 0 mod 2.
In the even case n = 2m, we have

m
Ex@K!"'?
t=1
as a real vector bundle, so

wy(E) = i (g — 1@l —~1)=(g — hm*mod 2.

=1



LIE GROUPS AND TEICHMULLER SPACE 473

Each moduli space of flat connections on a fixed bundle is therefore connected except for
the case w,(E) = 0 for n odd and w,(E) = (g — 1)m? for n = 2m, where the Teichmiller
component appears as well as the component containing compact group connections.

The final remark to complete the component count is to note that M, where the analysis
was carried out, consists of equivalence classes of representations in PSL(n, C) modulo the
conjugation action of that group. But now PSL(n,C)= PGL(n,C) but
PSL(n, R) # PGL(n, R) if n is even. In this case the subgroup of PSL(n, C) which takes
PSL(n, R) to itself by conjugation is the 2-component group PGL(n, R). Thus in the moduli
space of flat PSL(n, R)-connections with n even, the contractible Teichmiiller component
appears twice.

The description of components thus proceeds as follows:

(1) If n is odd, PSL(n, R) = SL(n, R) and if w,(E) = 0 there are two components, if
w3 (E) # 0 just one.

(2) If n = 2m, there are four topological types (8.1). Two do not lift to SL(n, R) and so
give connected spaces. Two do lift and if w,(E) # (g — 1)m? this gives a connected space. If
wy(E) = (g — 1)m* we have three components—the one containing PSO(n)-connections
and the Teichmiiller component appearing twice.
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